

Towards online position information integration in a location based services gateway

i Home Lab

HOCHSCHULE

Stefan Knauth Faculty for Computer Sciences, Geomatics and Mathematics Stuttgart University of Applied Sciences, Stuttgart, Germany

Aliaksei Andrushevich and Alexander Klapproth iHomeLab @ Lucerne University of Applied Sciences, Switzerland

stefan.knauth@hft-stuttgart.de

Outline:

- Location based services gateway
 (LBG)
- iLoc+ ILS
- Bringing together LGB and ILS

S. Knauth: Towards online position information integration in a location based services gateway LISE WS @ IPIN 2013 Oct 28th Montbeliard/France

Overview LBG

- Gateway is "glue" between existing automation systems and user client application
- Gateway offers
 2D/3D building map data
 automation / information object information
 - access path (Link, address)
 - Semantic information about the control interface (i.e. WSDL, UPnP description) session handling
 - authorization
 - access control

- User client applications obtain information from the Gateway
- They use this information for Building visualisation
 Device information and control supporting users of a building to
 - navigate receive information by spatial context
 - explore automation devices
- Image outlines some typical applications
 Status information
 Room information
 Door control / lighting control

Overview LBG

Gateway Architecture

items represented by "visual object"

VO comprises its visual appearance

Visual objects represent for example:

Sector maps of the building items with textual information link-providing objects automation objects

 Objects are accessed via the location based building services gateway (LBG) using web services

Visual Object

- Shape
 Visualisation, Icon for the Object
- Position
 Where the object is located / shall be displayed by the client
- Permissions
 For accessing/modifying the VO
- XMLInfo / link

May contain WSDL, Information text or other object information / link to control interface

 SubscriberList to manage notifications on state changes

Visual Object (VO)

Attributes:

persistent
active
permissions
position
shape
category
xmlinfo
link
credentials
subscriberList

Operations

set/get attributes
create(ID)
delete()
addSubscriber(sessionID)
removeSubscriber(sessionID)
ProcessMsg(message)
attributeChangedEvent(position, attributeNames)

Hochschule für Technik

LBG Implementation

Stuttgart

- Object repository managed by "manipulator" component
- Client keeps copy of VO's in his spatial region
 Alignment between Client and Server by notifications
- Same manipulator code is used in client and server
- Collada loader allows import of standardized 3D files
- Client-Server connection via RMI or Web Services

iLoc+ ILS Overview

- Mobile nodes (one shown) transmit synchronized ultrasound pulses
- Ultrasound Time-of-Arrival data of the pulses is recorded by the reference nodes
- Reference nodes transmit their received TOA data by radio to the iLoc Server
- TDMA operation is controlled via a central synchronization radio transmitter
- HFT deployment is 8 receivers and 4 transmitters

Localisation Tags

- Interactive (may send / receive data)
- Remotely updateable poweless e-book display
- Acceleration sensor, temperature sensor
- long battery life

S. Knauth: Towards online position information integration in a location based services gateway LISE WS @ IPIN 2013 Oct 28th Montbeliard/France

3rd prize at EvAAL 2011

 Hardware prior to EvAAL 2012 deployment (18 temporal transmitters for autolocalization, 26 receivers)

S. Knauth: Towards online position information integration in a location based services gateway LISE WS @ IPIN 2013 Oct 28th Montbeliard/France

Integration of ILS into LBG Concept

- Integration of ILS via LBG services interface
- ILS extended to commicate to the SI (alternative Approach: a light middlewar)
- ILS localizable items-> Visual Object in the LBG. This can be persistent or dynamically created by the ILS
- ILS pushes position updates to the LBG ("set attribute value" method)
 Update rate is configured within the ILS, LBG acts as slave

Coupling of iLoc+ and LBG (Overview)

Integration of ILS into LBG Setup

- iLoc+ generated position estimates (dummy positions) of 4
 Objects are communicated to the LBG server at a rate of 2*4 per second
- An Android visualization application is also connected to the LBG, independently of the LBG
- The app is notified by LBG on attribute updates of subscribed VOs
 → online tracking
- ILS pushes position updates to the LBG
 Update rate is configured within the ILS, LBG acts as slave
- ILS does not care about applications accessing the Information of the VOs via LBG

Results

- A LBG ("Location based building services gateway")
 references elements of a building.
 Typical elements: automation devices, visualisation data,
 assets, actors etc, modelled as VOs ("visual objects").
- prototype Setup comprising LBG server, iLoc+ indoor localization system and Android app for online position tracking/visualization
- System works well

Advantages:

LBG offers abstract interface

- → Applicatios are independent of ILS
- → Various ILS may connect to the LBG
- Identified drawbacks:
 - Clients are notified each time a position update is given → LBG client update rate should be configurable
 LBG hibernate/mySql and Web Services are resource hungry